
1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2859831, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 1

Robust Tracking using Manifold Convolutional
Neural Networks with Laplacian Regularization

Hongwei Hu, Bo Ma, Member, IEEE, Jianbing Shen, Senior Member, IEEE, Hanqiu Sun,
Ling Shao, Senior Member, IEEE, and Fatih Porikli Fellow, IEEE

Abstract—In visual tracking, usually only a small number
of samples are labeled, and most existing deep learning based
trackers ignore abundant unlabeled samples that could provide
additional information for deep trackers to boost their tracking
performance. An intuitive way to explain unlabeled data is to
incorporate manifold regularization into the common classifica-
tion loss functions, but the high computational cost may prohibit
those deep trackers from practical applications. To overcome
this issue, we propose a two-stage approach to a deep tracker
that takes into account both labeled and unlabeled samples.
The annotation of unlabeled samples is propagated from its
labeled neighbors first by exploring the manifold space that
these samples are assumed to lie in. Then, we refine it by
training a deep convolutional neural network (CNN) using both
labeled and unlabeled data in a supervised manner. Online
visual tracking is further carried out under the framework of
particle filters with the presented manifold regularized deep
model being updated every few frames. Experimental results on
different public tracking datasets demonstrate that our tracker
outperforms most existing visual tracking approaches.

I. INTRODUCTION

As a fundamental topic in multimedia processing, visual
tracking could be used in different practical application-
s, especially human-computer interaction, autonomous cars,
biomedical image analysis and video surveillance [29], [5],
[3]. It is a challenging problem due to target appearance
changes caused by illumination variation, occlusion, motion
blur, background clutter, etc. Visual tracking has been studied
for decades, and researchers have developed and designed
various tracking algorithms to handle those challenges. Re-
cently, deep Convolutional Neural Networks (CNNs), being a
powerful representation of visual data, have been applied to
various multimedia processing topics, such as object detection
[10], and image classification [15]. Deep CNNs have also
been used in visual tracking and achieve outstanding tracking
performance.

Actually, the use of deep networks in visual tracking is never
a smooth ride. The deficiency of labeled data in visual tracking

H. Hu, B. Ma, and J. Shen are with Beijing Laboratory of Intelligent In-
formation Technology, School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100081, China (Email: bma000@bit.edu.cn,
shenjianbing@bit.edu.cn)

H. Sun is with Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong. (Email: hanqi-
u@cse.cuhk.edu.hk)

L. Shao is with JD Artificial Intelligence Research (JDAIR), Beijing
100176, P. R. China, and also with the School of Computing Sciences, Uni-
versity of East Anglia, Norwich NR4 7TJ, UK. (email: ling.shao@uea.ac.uk)

F. Porikli is with the Research School of Engineering, the Australian
National University. (Email: fatih.porikli@anu.edu.au)

limits the application of deep CNNs to the tracking field. The
main reason is that obtaining a powerful and efficient deep
model needs large-scale annotated data. However, in visual
tracking, the annotated samples are cropped from the first
frame in a video, which are too few to train the complex
CNNs with millions of parameters. To handle this problem,
two types of CNNs based visual tracking methods have been
proposed from the perspective of sample collection. The first
type of methods [23], [32] adopt the CNNs trained on object
detection or image classification datasets to the tracking field
and regard them as a feature extraction tool. However, it
may not be suitable for the tracking problem by transferring
deep models from a non-tracking field. Moreover, a large-
scale dataset, which could be used to train a CNN model for
visual tracking, is still unavailable. And it needs tremendous
resources and efforts to annotate a benchmark for training
deep trackers. Hence, the second type of trackers [25], [30]
collect training samples from the barely available annotated
tracking benchmarks and consider the CNN as a classifier to
distinguish the target from the complex background. The above
deep methods are trained with labeled samples to achieve
impressive tracking performance, but they ignore the unlabeled
samples which are the most common and almost innumerable
in visual tracking data. In this paper, we attempt to make an
effective use of those unlabeled and labeled samples together
for accurate target location.

Visual data, including labeled and unlabeled samples, on
a high dimensional space often lie on a manifold with a
smaller dimensionality than the original space [39]. To exploit
the geometry of a high dimensional sample space, manifold
regularization has been proposed by combining labeled and
unlabeled data into a unified semi-supervised learning frame-
work [4]. It has been widely applied in many vision fields, such
as data fusion, image retrieval, and classification. The deep
learning algorithms under a manifold regularization framework
[33], [17] are introduced as well. But manifold regularized
CNNs have not been generalized to the tracking problem. The
major issue is that the training procedure of semi-supervised
CNNs is time-consuming, which is not suitable for online
visual tracking. To handle this problem, Lee [19] proposed
pseudo labels for unlabeled samples to train a simple and
efficient semi-supervised deep model, which is equivalent to
entropy regularization [20] in effect theoretically. Inspired by
the aforementioned methods, we generate the deduced labels
for unlabeled data points under the manifold assumption and
introduce an efficient tracker using CNNs.

We could introduce a manifold regularization item in the
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loss function of CNNs by taking the unlabeled samples arising
during tracking into consideration, but it will be a time-
consuming strategy for online tracking. Therefore, by deduc-
ing labels for unlabeled samples according to the manifold
structure of the sample space, we could learn a deep model in
a supervised manner approximately instead of the complex
semi-supervised problem. Motivated by these facts, in this
work, we introduce a two-stage approach to the deep tracker
that takes both labeled and unlabeled samples into account as
shown in Fig. 1.

The presented tracking approach offers the following three-
fold contributions:

• To better exploit both labeled and unlabeled samples, vi-
sual data in a manifold space are assumed to have similar
labels with their neighbors. This idea is formulated as a
graph Laplacian regularization with a Gaussian random
field. The labels of unlabeled samples are calculated by
the weighted average of its neighbors using this Gaussian
harmonic function.

• Those unlabeled samples with the deduced labels are used
to update a pre-trained CNN along with labeled samples.
The deduced labels of unlabeled data only relying on the
structural space may be inaccurate. Thus, we present to
train a CNN model using the deduced samples as part of
training samples and output a more accurate tag for each
unlabeled one.

• Our tracker is carried out under the framework of particle
filters with online updated CNNs. The proposed track-
ing approach is then verified on several public tracking
benchmarks and achieves better tracking results.

II. RELATED WORKS

A large number of visual tracking algorithms [38], [29]
have been proposed over decades. They are typically classified
into generative trackers and discriminative trackers. It is out
of the scope of this work to comprehensively review those
tracking methods. Here, we only review the works that are
mostly related to ours, and a more comprehensive overview
can be found in [29].

Traditional discriminative tracking methods utilize hand-
crafted representations such as CIE-Lab and HOG to model
the target appearance in general. For example, Henriques
et al. [13], [12] employed the HOG features to model the
target and locate the object center with kernelized correlation
filters. Haar-like features [21] were exploited in Struck [11] to
perform online tracking using the kernelized structured output
SVM. Ning et al. [26] used the original features of the color
image including Lab and LRT to formulate the final sample
vectors and trained a discriminative classifier using dual linear
structured SVM. The SOWP descriptors [16] were designed
by combining spatially ordered features to extract multiple
local patches for accurate visual tracking based on the Struck
tracker. Ma et al. [2] also used HOG features to establish the
final target representation. Qi et al. [46] used the spare codes
the represents a target. Those hand-crafted features often rely
on professional knowledge and are developed for specialized
issues, which means that they may not generalize well in the
tracking problem.

As the latest feature learning and classifier training tech-
niques, CNNs have been gradually used in visual track-
ing approaches. Ma et al. [23] extracted CNN features for
each image patch from VGG-Net [28] trained on ImageNet,
and learned multiple linear correlation filters using different
features obtained from different convolutional layers in this
network. The tracking results were decided by combinations
of the response maps calculated by those correlation filters.
Wang et al. [32] proposed a tracking method using fully
convolutional networks which were pre-trained on ImageNet
as well, and designed a feature map selection approach to
determine discriminative features for tracking. Wang et al. [44]
investigated different strategies to tackle the limited training
samples in online tracking. Qi et al. [27], [34] presented a
tracking method to construct several weak trackers based on
correlation filters, where each one was trained using the CNN
features extracted from different layers. The CNN here was
pre-trained on VGG-Net, and the adaptive hedging method
was applied to ensemble these weak trackers into a stronger
one. But the models obtained from other vision tasks may be
inappropriate for visual tracking. Nam and Han [25] learned a
representation for multi-domain learning based CNNs using a
large number of training samples obtained from VOT [18] or
OTB [38] (one for training, the other for testing). This work
performed well on the tracking benchmarks. Bertinetto et al.
[6] trained a fully-convolutional Siamese network end-to-end
for visual tracking on the ILSVRC15 dataset [31]. Tao et al.
[30] constructed a Siamese deep CNN whose inputs are image
pairs for visual tracking. They adopted the ALOV dataset [29]
to train and test their approach on OTB. The above methods all
neglect the abundant unlabeled samples available in a visual
tracking problem.

Manifold regularization based tracking methods aim to
make full use of both labeled and unlabeled data, which have
also been exploited in traditional visual tracking methods.
Bai and Tang [1] proposed a tracking method using online
Laplacian ranking support vector machines, where weakly
labeled data in the current frame were used to update their
appearance model. Ma et al. [22] treated dictionary learning
and classifier training as a single stage, and constructed a
dictionary that reflected the manifold structure of samples and
retained discrimination at the same time. Wang et al. [43]
also proposed a Laplacian regularization method to propagate
foreground labels. But the manifold regularized CNNs based
tracking method has not been well studied.

III. LABEL PROPAGATION USING GAUSSIAN FIELDS
HARMONIC FUNCTIONS

Now, we focus on the label propagation of unlabeled sam-
ples from labeled ones on an embedding manifold space using
Gaussian fields harmonic. Suppose that we are given l labeled
samples {(xi, yi) | xi ∈ Rd, yi ∈ {0, 1}}li=1 where xi is the
d-dimensional data point and yi is its corresponding label, and
we obtain u unlabeled samples {xi}l+u

i=l+1. A graph Laplacian
indicates that neighboring samples should share similar labels
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Fig. 1. The proposed architecture for manifold regularized CNNs, where both accurately labeled samples and unlabeled samples with deduced labels are
used to train this network. The image patches surrounded with red rectangles indicate positive samples, and the green ones represent negative samples. The
unlabeled samples are surrounded with yellow rectangles.

on the manifold space, which could be formulated as

min
yl+1,...,yl+u

l+u∑
i=1

l+u∑
j=1

wij(yi − yj)
2, (1)

where wij denotes the similarity weight between samples xi

and xj . Generally, the similarity is only relevant to the spatial
distance between a sample pair. In practice, we calculate the
weights of two samples only if they lie in the k nearest
neighbors of each other, i.e.,

wij =

 exp(−∥xi − xj∥2/δ), xi ∈ Nk(xj)
exp(−∥xj − xi∥2/δ), xj ∈ Nk(xi)

0, otherwise
, (2)

where Nk(xi) is a set including the k nearest neighbors of
sample xi. Eq.(1) can be reorganized as

min tr
(
yTLy

)
, (3)

where y = [yT
l yT

u ]
T with yl = [y1, y2, . . . , yl] represents

the labels of labeled samples and yu = [yl+1, . . . , yl+u]
denotes the labels of unlabeled samples. And the Laplacian
matrix L = D − W is calculated from similarity matrix W
whose elements are wij , and the diagonal elements of D are
obtained by [D]ii =

∑l+u
j=1 wij .

To deduce yu, Eq.(3) could be reformulated as

min
yu

tr
([

yT
l yT

u

] [ Lll Llu

Lul Luu

] [
yl

yu

])
, (4)

where Lll denotes the Laplacian matrix of labeled samples,
and Luu is the Laplacian matrix of all unlabeled samples, and
Llu = LT

ul represents the Laplacian matrix for labeled and
unlabeled samples. The above minimization problem could
be solved based on Gaussian fields harmonic functions [42].
Assuming that we have a function f to predict the label yi of
sample xi, it is formulated as f(xi) = yi. The function f is
assigned with a Gaussian field probability distribution

p(f) =
exp(−βE(f))∫

f |L=fl
exp(−βE(f))df

, (5)

where β is a constant parameter, L indicates the set of
labeled samples, and the constraint L = fl indicates that
the predictions of labeled samples calculated by function f

should be consistent with their true labels, and E(f) =∑l+u
i=1

∑l+u
j=1 wij(f(xi) − f(xj))

2. It can be proved that the
optimal prediction function f = argminf |L=fl E(f) is har-
monic, i.e., ∆f = 0 for unlabeled data set where ∆ denotes
the combinatorial Laplacian operation, and f = fl for labeled
samples [37]. This property means that the label of each unla-
beled sample is the weighted average of its labeled neighbors.
Thus, the optimal label vector y∗

u for unlabeled sample is
calculated as

y∗
u = Pyl, (6)

where P = −L−1
uuLul.

From this equation, the matrix P can be viewed as a
projection matrix for label propagation. And yu could be
regarded as the deduced label vector for an unlabeled sample.
But this label vector may not be accurate enough since it only
takes the spatial structure of the embedding manifold into
consideration and neglects the discriminative information of
labeled samples. Thus, we train CNNs using both the spatial
structure constituted by all samples and the discriminative
information of labeled samples in the next section.

IV. MANIFOLD REGULARIZED CNNS FOR ONLINE
VISUAL TRACKING

A. Model Overview

As provided in the leftside of Fig.1, we show the proposed
manifold regularized CNNs architecture trained with labeled
and unlabeled data, where the first three convolutional layers of
this network are taken from VGG-net [7] with a resized RGB
input. Followed by the convolutional layers, we append three
fully connected layers. In our settings, different convolutional
layers are usually connected by ReLUs, normalization, and
max pooling, and fully connected layers are connected by
ReLUs and dropout. The softmax loss is applied as the loss
function to train this network for separating targets from the
complex background. The design of this network is different
from existing deep networks for tracking. Firstly, the present
network receives both accurately labeled samples and unla-
beled samples with the deduced labels as its inputs, which
takes full advantage of the abundant unlabeled samples arising
during tracking. Secondly, the network model needs no change



1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2859831, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 4

Fig. 2. The tracking flow chart. Global templates are divided into several image patches, and each image part is assigned with a CNN model. The image
patches surrounded with red rectangles indicate positive samples, and the green ones represent negative samples. The unlabeled samples are surrounded with
yellow rectangles.

for both pre-training and updating, and it makes this deep
model more convenient to be applied in tracking. Besides,
we treat the samples from different video sequences equally,
where the shared information of them is expected to be learned
using this deep model. Finally, the single binary classification
layer in the last layer is suitable for tracking, since visual
tracking is modeled as a binary classification problem in most
tracking-by-detection algorithms.

B. Network Update

We aim to train a manifold regularized CNN to distinguish
the target and the background. As one of the loss functions,
softmax loss has been widely used in many deep neural
networks. Its main role is equal to a softmax layer and a
multinomial logistic loss layer. We introduce a loss function
considering both labeled and unlabeled data. For labeled
samples {(xi,yi) | xi ∈ Rd,yi ∈ {0, 1}C}li=1 where C is the
number of sample categories. In our settings, C = 2 indicates
the two sample classifications including target and non-target.
And yi is a label vector with one non-zero element only. The
softmax loss in classical deep neural networks can be written
as

Ll = −1

l

l∑
i=1

C∑
j=1

yji log (pj(xi)) , (7)

where pj(xi) represents the j-th softmax output of sample xi,
and yji the j-th element of label vector yi.

In order to utilize the unlabeled samples {xi}l+u
i=l+1, we

take the deduced labels calculated in Sec.III to participate in
the network training. Let {y∗

i ∈ {0, 1}C}l+u
i=l+1 indicate the

label vector of these unlabeled samples using Eq.(6). Thus, a
regularization term is defined after Eq.(7), i.e.,

L = (1− λ)Ll + λLu, (8)

Lu = − 1

u

l+u∑
i=l+1

C∑
j=1

y∗i
j log (p(xi)) , (9)

where y∗i
j denotes the j-th element of the deduced label vector

for unlabeled sample xi calculated by Eq.(6). The function
in Eq.(8) is named as a manifold regularized softmax loss
function, and its derivative with respect to xi is ready to
be obtained. If xi denotes the labeled samples, only partial
derivative of Ll should be computed, and Lu otherwise. Let f
be the softmax function, and zi ∈ RC be the input of softmax
loss with respect to sample xi, i.e., pj(xi) = f(zji ) where zji
represents the j-th element of zi. The final derivative consists
of the two parts, and it is balanced by a preset constant factor
λ, i.e.,

∂L
∂zj

= (1− λ)
1

l

l∑
i=1

C∑
j=1

yji

(
f(zji )− 1

)
+ λ

1

u

l+u∑
i=l+1

C∑
j=1

y∗i
j
(
f(zji )− 1

)
. (10)

The CNN model designed in Sec.IV-A is therefore trained with
both labeled and unlabeled samples with the back propagation
method in a supervised manner.

The presented manifold regularized CNNs are trained by
the min-batch stochastic gradient descent method. The labeled
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training samples are cropped from previous frames. And we
take the candidates sampled in the current frame around the
previous target location as unlabeled samples. In fact, the
number of these samples is quite small in contrast to the com-
plex deep neural networks. It not only may cause overfitting
when training the whole network using these samples, but also
increases the computational complexity which makes it im-
practical for online tracking. Thus, we only update the weights
of the last three fully connected layers for computational
efficiency and keep the weights of other layers unchanged.

C. Offline Pre-training

The three convolutional layers of this network are taken
from VGG-net trained with classification data (ImageNet),
which may not be appropriate for visual tracking problem-
s. Therefore, we collect training samples from VOT2015
[18], and learn the model parameters with these samples.
The positive and negative samples are sampled from every
annotated frame in the datasets. The positive samples and
negative samples are collected in each frame from the training
dataset. The samples are collected around the target region
according to a Gaussian distribution, and we choose 50 of
those samples whose overlap with ground-truth is larger than a
fixed threshold as positive samples and 200 of those ones with
their overlap rates that are smaller than a preset constant as
negative samples. The network in Fig.1 is only pre-trained with
labeled samples, and all the parameters in it will be updated
including the convolutional layers and the fully connected
layers. However, this may cause the training ambiguity when
sample different targets from the same sequence (like Jogging-
1,2) as suggested by [25]. The weights in the convolutional
layers are initialized using the corresponding part in VGG-net,
and the parameters in the fully connected layers are preset
randomly. We employ the softmax loss mentioned in Eq.(7).
This model is also trained using the min-batch stochastic
gradient descent method.

D. Tracking Approach

The introduced visual tracking method is implemented
under the framework of particle filters [24]. The goal is to
estimate the maximum of a posterior of an object state st
which is modeled by the target central coordinate, height and
width, in frame t. It can be formulated as

argmax
st

p(st | o1:t), (11)

where o1:t = {o1, . . . ,ot} represents the observation sample
set up to frame t. According to the Bayesian theorem, the
maximum a posterior is proportional to

p(ot | xt)

∫
p(st | st−1)p(st−1 | o1:t−1)dst−1. (12)

In this equation, the motion model p(st | st−1) is modeled
by a Gaussian distribution, and the posterior p(st | o1:t) is
approximated by a set of sampled candidates based on an
assumed proposal distribution which is the same as the motion
model. We take the positive score in the outputs of manifold
regularized CNNs as the likelihood value of a candidate.

To be more specific, we crop a set of candidate samples
whose positions obey a Gaussian distribution with the previous
target state as its mean value. We first update the proposed
manifold regularized CNN model with both candidates and
labeled samples. And then, the candidates are transferred into
the updated deep model, and a confidence value is obtained
for each candidate. We could choose the candidate with the
highest confidence as the current target. The tracking flow is
summarized in Algorithm 1.

Algorithm 1 Manifold Regularized CNNs Based Online Vi-
sual Tracking Algorithm
Input: The pre-trained CNN model, the target state s1 of the

first frame in a video.
Output: The target states s2, . . . , sn of the subsequent

frames.
1: Crop positive and negative samples Xl = {(xi, yi)}li=1 in

the first frame.
2: for t = 2 : n do
3: Sample target candidates Xu = {xi}l+u

i=1+1 in the t-th
frame around target state st−1.

4: Calculate the deduced the labels for target candidates
using Eq.(6).

5: Update the last three layer of CNNs model with mani-
fold regularized loss in Eq.(8) with its derivative Eq.(10)
using both the labeled and unlabeled samples {Xl,Xu}
until convergence.

6: Assign confidence value for each candidate using the
updated CNNs.

7: Determine the current target state st with the highest
confidence using Eq.(11).

8: Collect positive and negative samples
Xl = {(xi, yi)}li=1 based on current target state.

9: end for

Occlusion Handling Strategy: It may not be enough to
handle local target appearance changes caused by occlusion
during tracking, if we only establish the target model with
holistic templates. Hence, we further model global and local
target appearances at the same time. As shown in Fig. 2, the
holistic templates are divided into several overlapping image
parts, and different image parts corresponding to different
relative positions on the holistic templates are collected. And
then, we train several different CNNs for every local target
model with those local samples. Since we only update the
parameters in the fully connected layers, the time complexity
of tracking is acceptable. Suppose that the global template zg
is separated into k image patches {z(1)b , z

(2)
b , · · · , z(k)b }, their

corresponding confidence scores sg and {s(1)b , s
(2)
b , · · · , s(k)b }

are obtained with global and local CNN models. The final
confidence sf of a candidate can be computed as

sf = (1− γ)sg + γ
1

k

k∑
i=1

s
(i)
b , (13)

where γ is a constant to balance the impacts of global
and local models. Once a target is partially occluded, the
confidence of occluded parts will decrease, but the confidence
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Fig. 3. The comparison with state-of-the-art results on OTB [36]. The left subfigure shows the distance precision evaluation and the right one shows the
overlap precision estimation.

TABLE I
THE DETAILED PARAMETERS FOR EACH LAYER OF THE PROPOSED

MANIFOLD REGULARIZED CNNS. (THE ‘CONV’ INDICATES THE
CONVOLUTIONAL LAYER, AND ‘MAXPOOL’ IS THE MAX POOLING LAYER,
AND ‘FC’ REPRESENTS THE FULLY CONNECTED LAYER. THE SYMBOL ‘-’

MEANS THAT NO PARAMETERS EXIST IN THIS FIELD.)

Layer Kernel Size Feature Maps Stride Padding
conv1 7× 7 96 2 0

maxpool1 3× 3 - 2 0
conv2 5× 5 256 2 0

maxpool2 3× 3 - 2 0
conv3 3× 3 512 1 0

fc4 - 512 - -
fc5 - 512 - -
fc6 - 2 - -

of unoccluded parts still maintain high scores, which is helpful
for target localization accurately. Finally, the candidate with
the highest confidence is selected as the current target. In our
implementation, we divided the target into four local patches
for efficient computation. We believe that the max pooling
or ranked-pooling in [35] will be helpful and improve the
tracking performance especially in case of larger number of
local separations. The structure and training procedure of local
networks are just similar with the holistic networks, except for
the training samples. The training samples of local networks
are local patches cropped from a target.

V. EXPERIMENTAL RESULTS

The proposed tracking method is verified on two popular
visual tracking datasets, namely, OTB [36] and TB-100 [38].
The manifold regularized CNNs are trained with samples
collected from VOT2015 [18], and implemented based on
MatConvNet toolbox1. Our tracker runs about 1.2 fps using
the un-optimized Matlab implementation on an Intel(R) Core
i7 CPU with 3.5GHz and GeForce GTX 1080 GPU.

1http://www.vlfeat.org/matconvnet/

A. Implementation Details

The detailed parameters of each layer for the proposed
manifold regularized CNNs are shown in Table I. Besides, the
rectified linear units (ReLU) and local response normalization
(LRN) are added after ‘conv1’ and ‘conv2’. And ‘conv3’ is
only followed by the ReLU layer. The ‘fc4’ and ‘fc5’ layers
are followed by ReLU and the dropout layer.

Our tracker runs under the particle filter framework, and
the covariances of the target location and scale are set to
(0.6, 0.6, 1.0) which is formulated as a diagonal matrix for
Gaussian distribution. For each frame, 50 positive samples
and 250 negative samples are collected which means that
l = 300, and the number of candidates u = 400 is the
number of particles. In our method, three color channels of
CIE Lab are combined row by row of the target as the sample
feature. As described in Algorithm 1, the manifold regularized
CNNs are updated every frame. But in our implementation,
we update this model every three frames, and we could
collect more labeled samples to update our deep model and
make tracking more efficient. Additionally, a bounding box
regression technique [9] is utilized to improve the accuracy of
the target location. Refer to [25] for more details about the
bounding box regression.

B. Results on OTB

OTB [36] contains 50 video sequences, and each video is
annotated by different types of difficulties including out-of-
view, occlusion, fast motion, motion blur, and illumination
variations. All these sequences and their corresponding ground
truth are available online2. It is one of the most commonly
used tracking benchmarks to verify the tracking performance
of a tracker.

We compare the proposed tracking method with several
classical trackers such as MDNet [25], Struck [11], WCO
[45], CSK [12], SCM [41], KCF [13], and MEEM[40] and
some recently proposed deep learning based visual tracking

2http://visual-tracking.net/
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Fig. 4. The comparison with state-of-the-art results on OTB [36] for attribute-based estimation, including deformation, occlusion, illumination variation,
out-of-plane rotation, in-plane rotation, out-of-view, motion blur, and scale variation from left to right and up to bottom.

algorithms including HCF [23], HDT [27], SINT [30], CNN-
SVM [14] and DeepSRDCF [8]. For performance evaluation,
the tracking results obtained from different trackers are esti-
mated by distance precision (DP) and overlap precision (OP)
using one-pass evaluation. DP is a measurement which shows
the relative number of frames when the center location error is
smaller than a threshold (20 in general) in a video sequence,
while OP is employed to measure the percentage of frames
that the overlap rate between ground truth and the tracked
bounding box is larger than a threshold. More details about
these measurements can be found in [36]. The pre-training
videos are collected from VOT2015 [18], which excludes the
sequences arising in OTB.

1) Overall Comparisons: As shown in Fig.3, the DP and
OP comparisons on OTB are illustrated. From it, we find
that the performance of the proposed tracker is better than
that of existing deep learning based tracking approaches (such
as HCF and HDT), as well as traditional trackers. The DP
score of our method is 0.931, which is 27.7 percent higher
than the Struck tracker (which performed the best on this
benchmark in 2013). The OP score on the success plots for
the proposed tracking method is 0. HCF, HDT, CNN-SVM and
SINT perform roughly the same on DP score and OP score,
which have a small gap with the proposed tracking method.

2) Attribute-Based Comparisons: To test the tracking per-
formance under different scenes for these trackers, we compare
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Fig. 5. The state-of-the-art comparison results on TB-100 [38]. The left subfigure shows the distance precision evaluation and the left one shows the overlap
precision estimation.

them according to several annotated attributes. Fig.4 illustrates
the ranking of different tracking algorithms under eight at-
tributes: deformation, occlusion, illumination variation, out-of-
plane rotation, in-plane rotation, out-of-view, motion blur, and
scale variation. These tracking algorithms are ranked by DP
and OP scores on the OTB dataset, and the detailed scores are
shown in the legends of each subfigure. Overall, deep learning
based tracking methods, such as MDNet, DeepSRDCF, HCF,
and HDT, behave better than traditional trackers on these
attributes. The proposed method performs the best on the total
eight attributes compared with those popular trackers.

C. Results on TB-100

TB-100 [38], as an extended tracking dataset of OTB,
adds about 50 annotated videos. We compare the proposed
tracking method with the same popular trackers mentioned in
the previous section and the same comparison metrics. The
pre-training videos are collected from VOT2015 [18], which
excludes the sequences arising in TB-100.

1) Overall Comparisons: To verify the performance of our
method on a larger video dataset, we compare the proposed
approach on TB-100 with those tracking algorithms mentioned
above using the same performance evaluation criteria and the
same pre-trained deep CNN model. Fig.5 shows the overall
estimations for those trackers on this benchmark. The DP and
OP scores of our method are 0.886 and 0.658 respectively,
which are higher than those of the compared deep learning
based tracking methods, such as HDT, HCF, CNN-SVM, and
those traditional trackers. The DeepSRDCF, HDT, HCF, CNN-
SVM tracking methods perform well among these methods,
which demonstrates that deep learning could improve the
performance of traditional trackers greatly.

2) Attribute-Based Comparisons: As shown in Fig.6, we
also compare our method with those popular trackers under
deformation, occlusion, illumination variation, out-of-plane
rotation, in-plane rotation, out-of-view, motion blur, and scale
variation. These tracking algorithms are ranked by DP and
OP scores on the TB-100 dataset, and the detailed scores are
shown in the legends of each subfigure. From these figures,

we find that our tracker behaves better on these attributes than
both deep trackers and conventional trackers. Nonetheless, the
tracking performance scores still have room for improvement.

D. Component Analysis

1) Effectiveness of Manifold Regularization : To verify
the effectiveness of the manifold regularization item in the pro-
posed method, we implement the experimental comparisons of
our tracker with different numbers of nearest neighbors men-
tioned in Eq.(2) on OTB. As shown in Fig. 7, the DP scores
(vertical axis) of our method with neighbors k = 0, 3, 5, 7, 10
(horizontal axis) are illustrated in the histogram. It is noted
that the performance will be improved when the manifold
regularization item is removed, and the experimental results
are shown in Fig. 7 when k = 0. Here, we did not implement
the tracking experiment by just setting k = 0 since it would
cause program error. It is just a representation of experimental
results without manifold regularization. From the figure, the
worst tracking performance is produced using our method with
k = 0, which means that the proposed manifold regularization
item works in our setting. The highest DP score is obtained
when k = 5. Hence, we choose 5 as the number of nearest
neighbors in our tracking algorithm. The performance declines
with the increase of the number of neighbors, which means
that a suitable number of neighbors benefits the tracking
performance. In principle, a larger number of neighbors will
bring more information that is beyond a local region of a
sample, and it will violate the assumed manifold structure.
Therefore, k = 5 is the best choice for the spatial structure of
manifold and tracking performance through our experiments.

2) Influence of Global and Local Models: To test the
influence of global and local models in the proposed method,
we implement the experimental comparisons of our tracker
with the increase of λ in Eq.(13) from 0 to 1 on OTB. As
shown in Fig.8, the DP scores (vertical axis) of our method
with λ = 0, 0.1, 0.25, 0.75, 1 (horizontal axis) are illustrated in
the histogram. From the figure, the best tracking performance
is obtained when λ = 0.5, which is 0.931 for DP score.
Hence, we set the value of λ to 0.5 of Eq.(13) in our tracking



1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2859831, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 9

Fig. 6. The comparison with state-of-the-art results on TB-100 [38] for attribute-based estimation, including deformation, occlusion, illumination variation,
out-of-plane rotation, in-plane rotation, out-of-view, motion blur, and scale variation from left to right and up to bottom.

algorithm. Therefore, the local model could bring a certain
performance improvement for tracking. But the drawback is
that the tracking time increases with the rise of image patches.

3) Effectiveness of Pre-training and Bounding Box Re-
gression Strategy: We also carry out a comparison experiment
with the tracking algorithm without offline pre-training strat-
egy presented in Sec.IV-C and the bounding box regression
Strategy to have a more comprehensive understanding of the
presented tracker. As shown in Table II, a CNN model without
pre-training (only random weights in different layers) based
tracker performs pretty bad. For a complex CNN, training
samples extracted from the first frame only are far from
enough. Thus, the DP and OP scores are pretty low, and

most targets couldn’t be located accurately. The bounding box
regression strategy is useful for our tracking to improve the
tracking performance. The DP and OP scores increase about
2.9 and 1.1 percent respectively.

E. Visual Comparisons

Fig.9 and Fig.10 show the qualitative comparisons of our
tracking algorithm with the state-of-the-art trackers.

1) Occlusion: Target occlusion is one of the most challeng-
ing factors during tracking. It brings difficulties for accurate
target locating because of the missing of target appearance
information. Fig. 9 (top two rows) shows part of the track-
ing results of different trackers under partial occlusion. In
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Fig. 9. The visual comparison under partial occlusion (top two rows) and deformation (bottom two rows). The names of these sequences are “Dude”, “Suv”,
“BlurBody”, and “Bolt” from top to bottom.

Fig. 7. The experimental comparisons with different numbers of nearest
neighbors k. Fig. 8. The analysis of global and local models .
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Fig. 10. Visual results under illumination variations (top two rows) and rotation (bottom two rows). The names of these sequences are “Basketball”, “Coke”,
“DragonBaby”, and “Ironman” from top to bottom.

TABLE II
THE PERFORMANCE COMPARISON RESULTS WITH AND WITHOUT OFFLINE

PRE-TRAINING METHOD ON OTB.

Without
Pre-training

Without
Bounding Box

Regression

Ours

DP 0.357 0.902 0.931
OP 0.293 0.668 0.687

sequences “Dude”, and “Suv”, the interesting targets are
occluded by background objects occasionally. In this work, we
train multiple CNNs for different image parts and decide the
final target according to global and local confidences, which
alleviates the adverse impacts caused by partial occlusion
and verifies the effectiveness of our tracking for handling
occlusion. Some trackers (like MEEM) could track interesting
targets precisely and even drift under occlusion scenarios.

2) Deformation: The rigid and non-rigid deformation of
the target during tracking often leads to the missing of existing
appearance information and the addition of new appearance
information. As shown in Fig. 9 (bottom two rows), the
postures of human bodies in the four videos are changing
with the swinging of limbs. In addition, motion blur exists
in sequences such as “BlurBody”, which causes the target
appearance changes. From this figure, we find that algorithms
like ours and CNN-SVM could address target deformation. It
can be seen that discriminative appearance modeling benefits
tracking. And our tracking approach that is trained on CNNs
with both labeled and unlabeled samples could improve the
accuracy of classification for unlabeled samples containing
deformed targets. Thus, the proposed method could handle
the deformation problem very well.

3) Illumination Variation: The target appearance will have
shading due to the change of illumination in the surroundings.
For example, the target appearance in “Basketball” (#700) or
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“Coke” in Fig. 10 are influenced by the lights, and both the
global and local appearances are changed constantly. From
the tracking results, we find that our tracker could resist the
illumination variations in the tracking procedure, and most
deep learning based trackers have good capacity to handle
this challenge. But traditional trackers (such as SCM) could
not track the target well from the beginning to the end. It
is clear that CNNs have certain advantages for illumination
variations.

4) Rotation: As shown in Fig. 10, targets in “DragonBa-
by”, “Ironman”, etc. experience in-plane or out-of-plane rota-
tion. Moreover, the background in most videos are cluttered,
which is unfavorable for tracking. Our tracker could update
the CNN models only with samples obtained from the current
frame online, and make them adapt to appearance changes
rapidly caused by rotation. The tracking results also prove that
our tracker could handle rotation well, while other trackers
(such as HCF and MEEM) drift more or less during tracking.

VI. CONCLUSION

We have presented an online visual tracking algorithm
based on manifold regularized CNNs using the Gaussian fields
harmonic function. The labels of unlabeled samples were first
calculated using their local neighbors with graph Laplacian,
and then the proposed deep model was trained online with both
labeled and unlabeled data. It is a relatively simple network
architecture and pre-trained using the samples collected from
a public tracking benchmark. The proposed deep tracker
was tested on several popular tracking datasets and achieved
better tracking performance compared with different tracking
approaches.
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